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ABSTRACT 
In this paper, the mathematical formulation of indirect boundary element method (IBEM) in the case 
of a wake of a body is presented. When a streamlined body passes through the fluid or the fluid 
flows past a body at rest. A wake is formed consisting of fluid in regular motion passed near to the 
boundary of such body and the vorticity is largely confined to the fluid of a wake. For the sake of 
simplicity, the boundary of the body is discretized into linear quadrilateral elements so that the two-
dimensional boundary elements are also linear. The integrals in this case can be evaluated 
numerically using one-dimensional Gauss-quadrature rule.  
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INTRODUCTION  
From the time of fluid flow modeling, it had 
been struggled to find the solution of a 
complicated system of partial differential 
equations (PDE) for the fluid flows, which 
needed more efficient numerical methods. 
With the passage of time, many numerical 
techniques such as finite difference method, 
finite element method, finite volume method 
and boundary element method etc. came into 
beings, which made possible the calculation of 
practical flows. Due to discovery of new 
algorithms and faster computers, these 
methods were evolved in all areas in the past. 
These methods are CPU time and storage 
hungry. One of the advantages is that with 
boundary elements one has to discretize the 
entire surface of the body, whereas with 
domain methods it is essential to discretize the 
entire region of the flow field. The most 
important characteristics of boundary element 
method are the much smaller system of 
equations and considerable reduction in data 
which is prerequisite to run a computer 
program efficiently. Furthermore, this method  
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is well–suited to problems with an infinite 
domain. From above discussion, it is 
concluded that boundary element method is a 
time saving, accurate and efficient numerical 
technique as compared to other numerical 
techniques, which can be classified into direct 
boundary element method and indirect 
boundary element method. The indirect 
method utilizes a distribution of singularities 
over the boundary of the body and computes 
this distribution as the solution of integral 
equation. The derivation of mathematical 
formulation for such method in the presence of 
a wake is useful for the solution of physical 
problems. The term ‘wake’ is commonly 
applied to the whole region of non-zero 
vorticity on the downstream side of the body in 
an otherwise uniform stream of fluid . The 
velocity distribution in the wake is likely to be 
complicated in the neighborhood of the body, 
even when the flow is steady, judging by the 
flow fields. The fluid in the region outside of 
the boundary layer and wake region flows as if 
it were inviscid. Of course, the fluid viscosity 
is the same throughout the entire flow field. 
 
GEOMETRICAL REPRESENTATION OF 
A WAKE 
All the fluids are viscous to some extent and 
there is a region of the flow field near the body 
where the viscosity plays a vital role. If the 
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body under consideration is stream lined , then 
the boundary layer will cover the whole body 
from the front to the rear end , producing a 

wake of negligible thickness. While in case of 
bluff body , the boundary layer separates from 
the body producing a thick wake.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATHEMATICAL FORMULATION 
Let the body under consideration be as shown in Figure 3 . 

 

 

 

 

 

 

 

 

 

 

 

The surface of body is  S  =  SB + SW + S∗i  ,  
where  SB  is the surface of the actual body,  
SW  the surface of the tabular wake which 
starts from the rear end of the body and 
extends to infinity in the direction of the onset 
flow and  S∗i   the surface of that portion of the 
sphere  S∗  cut by the wake of the body. 
Let the surface  S  divide the space into two 

regions  R  and  R′  and let  n̂  be the outward 
drawn unit normal to the surface  S. Let  φ  and  

φ′  denote the velocity potentials of the acyclic 
irrotational motions in the regions  R  and  R′  
respectively, with  φ  regular at infinity. Then 
if the point  ‘i’  be internal to  R′  and therefore 
external to  R, then we know that the equation 
of the direct boundary element method for a 
wake for the region  R  is 
 

Figure (1) 

Figure (3) 

Figure (2) 
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Further, we also know that the equation of the direct boundary element method for the region  R′  is 
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In this region,  S  =  SB + SW + S∗i  ,  therefore 
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Since  
∂ φ′
∂ n   =  0  on  SW,  the second integral on the R.H.S. of equation (5) is zero. 

Adding equations (2) and (5), then 
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Similarly in the case when  ‘i’  is internal to  R  and hence external to  R′, the same equation results with  φi, replacing  φ′i  on 

the L.H.S. In particular, when ‘i’ lies on the surface  S, then  φ′i  is replaced by  
1
2 (φi + φ′i) . The above mentioned three cases 

can be combined by writing 
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where ci  =  
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0     when      ‘i’  is within  R’
1     when       ‘i’  is within  R’
1
2     when     ‘i’  is on  S  and  S  is smooth

  

Let the interior velocity potential  φ′  be equal to the negative of the velocity potential of the uniform 
stream,  φu.s,  then 
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Where   Φ = φ + φu.s 
 
The boundary condition of zero normal velocity on the body now implies 
∂ Φ
∂ n   =  0  on  SB,  thus the first integral on the R.H.S. becomes zero.  

Also the uniform stream in the negative direction of the x–axis has the velocity potential 
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φu.s = Ux  
     = x  when  U  =  1 

Further, since the outwardly drawn unit normal  
^
n  to  S∗i   is in the negative direction of the x–axis, then  
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Let the surfaces of the body and the wake be descretized into  m  quadrilateral elements, then equation (8) can be 
written in descretized form as 
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The  h
K   
i j   are influence coefficients defining the interaction between the  ‘i’  and a particular  k  node on an element  ‘j’. 
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where W
k  
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To write equation (9) corresponding to node  ‘i’,  the contribution from all of the elements associated with the node  ‘i’  are to 
be added into one term, defining the nodal coefficients. This will give the following equation 
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where each  Ĥ i j  and  Ŵ i j  term is the sum of the contributions from all the adjoining elements of the node  î  .  Hence 
equation (16) represents the assembled equation for node  ‘i’  and can be written as 
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Ĥ i j + Ŵ i j      when   i  ≠  j

Ĥ i j + Ŵ i j – c i     when   i  =  j
  (18) 

when all the nodes are taken into consideration, equation (17) produces an  M x (M + 1)  system of equations which can 
again be put in the matrix form as              [H] {U}  =  {R} (19) 
where  [H]  is a matrix of influence coefficients,  {U}  is a vector of unknown total potentials  Φ i  and  {R}  on the R.H.S. is 
a known vector whose elements are the negative of the values of the velocity potential of the uniform stream at the nodes on 
the surface of the body. 

Note that now  {U}  in equation (19) has  (M + 1)  unknowns  Φ 1, Φ 2, ……., Φ m, φ ∞.  To solve this system of 
equations, the values of  Φ  at some position must be specified. For convenience,  φ ∞  is chosen as zero. Thus the   
M x (M + 1)  system of (equations) reduces to an  M x M  system of equations which can be solved easily, but now the 
diagonal coefficients of  [H]  will be found by  

H i i  =  – 

M
Σ

j = 1
(j ≠ i)

  H i j – 1  (20) 

The matrix system can again be solved for unknown velocity potentials and thus the pressure coefficients over the 
surface of the body can be calculated. 
 
CONCLUSION 
The mathematical formulation for indirect boundary 
element method taking into account the wake of the body 
has been derived. Since the wake is semi-infinite, 
therefore such formulation can be used to calculate the 
flow past the semi-infinite bodies. It is also useful to 
apply this formulation for calculating flow past the bodies 
of complex shapes such as road vehicles, aeroplanes and 
ships, etc. 
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